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Minimal Coupling of Electromagnetic Field in 
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We minimally couple the electromagnetic field to gravity in Riemann-Cartan 
spacetime in the self-consistent formalism for perfect fluids by treating the internal 
energy of matter as a function of the electromagnetic field. The overall Lagrang- 
Jan of the gravitational field, perfect fluid, and the electromagnetic field is con- 
strained to be gauge invariant under gauge transformations of the vector 
potential. The theory preserves both charge conservation and particle number 
conservation, and gives the usual form of the free field equations. 

1. INTRODUCTION 

We consider the problem of "minimally" coupling the electromagnetic 
(EM) field to Riemann-Cartan (RC) spacetime for charged perfect fluids. 
One of the major historical problems with coupling the EM field to any 
spacetime geometry has been the maintenance of gauge invariance, of charge 
conservation in the theory (Novello, 1976). One solution to this problem 
has been the assumption that, in lifting the EM field from the arena of 
special relativity into a more complex geometry, the EM field tensor is taken 
to be a two-form (Benn, 1982; Heyl et al., 1976; Mukku and Sayed, 1979). 
It is well known that the generalization of a geometrical object to a more 
complex space can be done in many ways, i.e., there is no apriori requirement 
that the EM field be a two-form (Spinosa, 1987). One is free to impose prior 
constraints on the fields, such as in the two-form approach for the EM field, 
or overall constraints on the form of the field equations after generalization. 
The latter condition is equivalent to requiring that the Lagrangian satisfy 
certain conditions, in this case, overall gauge invariance. We will take this 
approach for coupling the EM field to RC spacetime. 
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In our development, the self-consistent Lagrangian formalism for per- 
feet fluids in RC spacetime (Ray and Smalley, 1982a, 1983a,b) forms the 
basic Lagrangian to which we add a Lagrangian for the EM field. We point 
out that earlier work by Amorim (1984, 1985) and by de Ritis et al. (1985) 
using the self-consistent formalism assumes that the EM field is a two-form. 
Instead, here we assume that the EM field is minimally coupled to the 
geometry of RC spacetime in the sense that the flat-space derivatives are 
generalized to RC spacetime via the asymmetric connection of RC spacetime. 
The EM Lagrangian contains the usual field Lagrangian plusa current term 
(e.g., Amorim, 1984). It will be necessary to show how one is able to conserve 
gauge invariance, not only for the EM field tensor, but also for the Lagrang- 
ian as a whole. 

Our treatment of a perfect fluid interacting with an EM field is closely 
related to that of the Einstein-Maxwell theory in Riemannian geometry in 
which the flat-space derivatives of Minkowski space are generalized via the 
Riemannian connection to the covariant derivatives of Riemannian geom- 
etry. It is purely an accident, due to the symmetry of the Christoffel connec- 
tion, that this approach in general relativity coincides with the two-form 
approach for the electromagnetic field. In our self-consistent approach, all 
fields, including the electromagnetic field, are coupled to the geometry via 
the RC connection. The EM fields are thus considered part of the system 
and therefore mutually interact with all fields. By contrast, the two-form 
approach seems to treat the EM field as an external field. 

In Section 2 we briefly review the self-consistent Lagrangian for a perfect 
fluid, and in Section 3 we introduce the EM Lagrangian. We discuss gauge 
invariance in Section 4. The complete Lagrangian and its variation are given 
in Section 5, and we derive the various field equations in Section 6. In 
Section 7, we demonstrate several of the technical details involving the field 
equations, such as charge conservation and the free field equations. We give 
our conclusions in Section 8. 

2. LAGRANGIAN FOR PERFECT FLUID 

The self-consistent Lagrangian formulation for perfect fluids has been 
described for both general relativity and RC spacetimes (Ray, 1972; Ray 
and Smalley, 1982b). This Lagrangian density is given by 

L = L c + L F  (1) 

where the Lagrangian densities for the gravitational field and the perfect 
fluid are given respectively by 

L~ = e~/2tr (2) 



Coupling of EM Field in Riemann-Cartan Spacetime 1255 

and 
* 

LF = e{--p[1 + e(p,  s, Fq) ] -  2~Vi(pu')+ ,~3ukOk X + Z4ukO~s 

+ ;q ( g j # +  1)} (3) 

where ~ is the scalar curvature, x = 8~rG, G is the gravitational constant, g,j 
is the metric tensor with holonomic indices given by Latin characters such 
that i=O, 1, 2, 3, and e=  (_g)J/2, where g=  det(g0). The matter density is p, 
s is the entropy density, X is the fluid parameter associated with the Lin 
constraint (e.g., Ray, 1972) and u ~ is the four-velocity of the fluid particles. 
The function e then represents the internal energy of the fluid, which is a 
function of the density, entropy and the EM field in the self-consistent 
formalism. The various Z's are the Lagrange multipliers that ensure particle 
number conservation, Lin constraint, conservation of entropy, and the 
orthonormality of the four-velocity. The "star" derivative is ~i=V;+2S;,  
where Vi is the usual covariant derivative in RC spacetime with torsion 
tensor, S k = Ftu] k, and S;= Sd ~. A discussion of the star derivative can be 
found in Hehl (1973, 1974). An overdot on a variable a represents the action 
of derivatives along fluid flow lines, ukVka =--d. The perfect-fluid Lagrangian 
is the generalization to RC spacetime of the general relativistic perfect-fluid 
Lagrangian density of Ray (1972). 

The second leg of the self-consistent formulation is the thermodynamics 
for a perfect fluid, 

de = T d s - p d ( 1 / p )  (4) 

where T is the temperature and p is the pressure. After introducing the EM 
Lagrangian in the next section, we will generalize the thermodynamics to 
include EM contributions to the internal energy. 

3. LAGRANG1AN FOR CHARGED, PERFECT FLUID 

We wish to extend the general form for the EM Lagrangian 

LeM = e{ - �88 FFFo �9 + J~Ak} (5) 

where F ~ is the EM field tensor, J~ = qpu k is the current four-vector, q is the 
electronic charge, and A k is the four-vector potential of the EM field. How- 
ever, we do not assume that the EM field tensor is a two-form. Instead we 
minimally couple the EM field to the geometry in the sense that 

Fu = 2 VtiAj] (6) 

If the EM field is coupled to the geometry of spacetime, then it, as 
well, should be treated as a thermodynamic variable in the self-consistent 



1256 Smailey and Krisch 

formulation. The thermodynamics of EM systems has been discussed exten- 
sively by Guggenheim (1936). Accordingly, for charged perfect fluids, we 
extend the thermodynamics from equation (4) to 

de. = T d s - p d ( 1 /  p)  - (1 /2p)F~  (7) 

By including the last term in equation (7), we include the energy density of 
all EM fields as part of the total system. 

In the next section, we show how we must augment the EM Lagrangian 
in order to maintain gauge invariance. 

4. GAUGE INVARIANCE 

The idea behind gauge invariance in any Lagrangian-based theory fol- 
lows the general approach for the Dirac Lagrangian. For Dirac fields, gauge 
invariance requires extending the usual gauge transformation of the vector 
potential to include a "gauge transformation of the second kind" (Messiah, 
1962) for the quantum Dirac field. The equivalent field in RC spacetime is 
the torsion field. Thus we require that F e (as well as L) be invariant under 
the extended gauge transformation (Smalley, 1986) 

.4~ = .4 j -  0j0, (8) 
~ k  k 2 k 

S o - S u +-~b~StiOjltp (9) 

where ~p(x) is the gauge field and b is a constant of proportionality. The 
equivalent effect on the connection is 

r t ~ k ~  k 2 k 2 k F u +~bSi Ojqa-gbg#a (o (10) 

Previous attempts to generalize the Dirac field to RC spacetime only seems 
to have been successful if the torsion field is restricted to the torsion vector 
part (Mukku and Sayed, 1979; Hojman et al., 1978) without proper torsion. 
We do not make any a priori constraint on the proper torsion. In our 
case, any such restriction must follow naturally from the variation of the 
Lagrangian. We do note that the torsion vector seems to play an important 
role in these theories, and in some cases is assumed to be proportional to 
the vector potential itself (Hammond, 1988, 1989). In order to understand 
this aspect of our Lagrangian, we write the torsion tensor in terms of its 
proper (trace-free) and torsion vector (trace) parts 

S j r  k _2.~k e Ju - 3"tioJl (1 I) 

where the caret indicates the proper torsion part of the torsion tensor. Com- 
bining equations (9) and (11), we see immediately that the extended gauge 
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transformation of the torsion tensor is equivalent to the transformation 

S;=Sj-b3jcp (12) 

Sbk=So .k (13) 

By comparison with equation (8), one may conclude that the torsion vector 
and the vector potential could be proportional, i.e., 

Sj=-bAj (14) 

We will therefore assume this restriction in the EM Lagrangian. 
The combined action of the extended gauge transformation on the EM 

field gives 

F b = F u -  2 {]bA uOjffp + ] SEjd, 1 r S~O~qg} (15) 

Normally the process of gauging the Lagrangian field and the variation of 
the Lagrangian are independent operations. However, here we have included 
the constraint (14) in our overall Lagrangian. This allows us to use the 
relationship between the torsion vector and the vector potential in the gaug- 
ing process. The transformed EM field is now invariant if we further require 
that the proper torsion and the gauge satisfy the condition 

S~0kcp= 0 (16) 

It is not obvious at this point that we can justify this condition, since it 
seems at first that just the EM field tensor F 0 given by equation (6) is a 
function of the proper torsion; in Section 6 we will discover that equation 
(16) is correct. 

It is interesting to note that in some theories (Smalley and Ray, 1986) 
involving spin fluids, the proper torsion satisfies the field equation 

Sijk = 2 PSoUk (17) 

In this case, the condition on the gauge would reduce to the requirement 
that the gauge in the comoving frame is not an explicit function of time, i.e., 

U~ cp = 0 (18) 

Such a condition on the gauge, equation (18), is very similar to the harmonic 
condition imposed in classical electromagnetism when, for example, one 
imposes a particular gauge such as the Lorentz gauge. The same effect occurs 
for general relativity (Grensing and Grensing, 1983a,b). Thus we are led 
naturally to the addition of a gauge-fixing term to our EM Lagrangian 
(Grensing and Grensing, 1983a,b; Fock, 1964; Dirac, 1959). 

Because of the above considerations, we could add a term to the EM 
part of the Lagrangian which fixes the Lorentz gauge in RC spacetime, but 
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first we must determine whether we can also make the total Lagrangian 
invariant under gauge transformations as well. It is not difficult to determine 
that the perfect-fluid part of the Lagrangian is invariant, but the gravita- 
tional field part is not. First we write the scalar curvature in terms of its 
Riemannian plus torsion parts 

~= K + 4 V~ } Sk--~ SkSk + Lk, SJk' + 2gjk, ~3J'k (19) 

where the scalar curvature K and the covariant derivative V~ } are those of 
Riemannian spacetime. Considering only the torsion vector terms, we note 
that the variation of the divergence term vanishes, but the variation of the 
torsion vector squared term does not vanish, 

k} ,0 k = -T&6S  (20) 

In order to maintain gauge invariance of the total Lagrangian, the correct 
form of the gauge-fixing term should be 

el 2b Vk.,4 k} (21) Lo =- 

Our form of the EM Lagrangian is found by combining equations (5) and 
(21) plus a (torsion vector)-(vector potential) constraint term following 
equation (14), 

( I  ,j k 2b Le=el-aF~Fu+ J Ak--~-s Vk/tk + ck(Sk--b.dk)} (22) 

In the next section we find the variation of the total Lagrangian. 

5. VARIATION OF LAGRANGIAN FOR CHARGED,  PERFECT 
FLUID IN RC SPACETIME 

The total Lagrangian for a charged perfect fluid with spin density is the 
combination of Lagrangians given by equations (2), (3), and (22) : 

L=L~+ LF+ Le 

{ * , =e  ~ / 2 t r  p[1 + e(p, s, Fu) ] -~aVi(pu )+A,3uk3kX 

+~4UkGS+;~I(gouiu/+ 1) J~U~' --4-- "U 

+JkAk--~VkAk+Ck(Sk--bAk)} (23) 
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where the variables of variation are go, S0 k, Sk, p, s, X, u ', Ak, the various 
Lagrange multipliers, Z, and C k. In order to complete the variation of L, we 
must add to this system the thermodynamic relationship for a charged per- 
fect fluid given by equation (7). 

The total Lagrangian (23) yields the following variational field equa- 
tions 5L : 

Metric equation 8ga : 

1_[_ [ - G  r + ~Tk( Tk,J + TkJi)] _ �89 + s)g 0 + �89 pZzg ~ + Z,u'u y 
2~: 

I n j I i i kl 4b [S ( iAJ )_~g lJA IS I ]=  0 (24) - I [F  F i+zg F Fkl]---~-s 

where T~=Sr is the modified torsion tensor (Benn, 1982; Heyl 
et al., 1976). 

Proper torsion 6Sok : 

1 + 3 V ]  = 0 (25) 
/r 

Torsion vector 3 8Sk : 

- 8  Sk+Ck+4b Ak=O (26) 
3tr 3~r 

Vector potential 8Ak" 

r '- * ik k 4b -F 'JS~+ ViF - b C  +- -Sk+qpuk=O (27) 
3tr 

Mass density 5p: 

- (1  + s + P ) +  Z2+qukAk=O (28) 

Four-velocity 8uk : 

pVk/~2 Jr ~3Ok X ~- ~4Ok S -~ 2Z1 u~ + qpAk = 0 (29) 

-~As an aid to those rederiving the equations, we write equation (26) including terms that cancel: 

8 Sk+~F~Ai + Ck+4bAk_~FikA,=O 
3tr 3x 
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Lin 6X : 

Entropy ~s: 

* k Vk(3~3u ) = 0 (30) 

* k Vk(,~4u ) + pT= 0 (31) 

The Lagrange multipliers give the following constraint equations: 
Orthonormality of  four-velocity 6 ~ " 

g~ulu j= - I (32) 

Conservation of  particle number 63,2 : 

Vi(pu;) =0 (33) 

Lin constraint 3)~3" 

Conservation of  entropy (~)~4 : 

X = 0  (34) 

~=0 (35) 

Torsion constraint 6 Ck : 

Sk=bAk (36) 

Equations (24)-(36) represent the raw variational field equations 
obtained from L. In the next section, we arrive at the useful form of the 
metric, torsion, and EM field equations. 

6. FIELD EQUATIONS FOR A CHARGED SPIN FLUID 

The proper torsion field equation is obtained from equation (25) by 
taking the cyclic permutation of the indices (/jk) ~ (jki) and then adding to 
the original. We find 

S ~ = 0  (37) 

which identically satisfies the constraint on the gauge given by equation (17) 
which we discussed in Section 4 on gauge invariance. It is interesting to note 
that in the variation of the Lagrangian there are proper torsion contributions 
to equations (26)-(27) from the EM part of the Lagrangian; there is, how- 
ever, a compensating piece from the variation of the internal energy via the 
thermodynamics given by equation (7) so that in the end, the proper torsion 
vanishes in the EM field equation, as we will see later in this section. Note 
that equation (3) is also in agreement with earlier work on the status of the 
proper torsion for spinning fluids in RC spac~time (Smalley and Ray, 1986), 
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which substantiates the relationship between the spin density of a fluid and 
the proper torsion. 

In order to reduce the metric equation (24) to a more recognizable 
form, we must substitute for the Lagrange multipliers. 

Multiplying the 6p equation (28) by p, we find 

p~2= p (  l + e + P)--  qpukAk (38) 

Then multiplying the 6u k equation by u k and substituting for A2, we get 

A, =�89 1 + g  + P-P-/ (39) 
P/ 

Finally, upon substituting equations (38) and (39) into equation (24), we 
finally obtain our form of the metric field equation 

G (U) -~k(TkU+ T kje) = toT ~ (40) 

where the symmetric energy-momentum tensor has the components 

T e= TOM + TOM + T~F (41) 

with perfect-fluid energy-momentum tensor 

TOM=p(1 + , + P)ui uJ + pg U (42) 

with electromagnetic energy-momentum tensor 

TOM = _ [ F k i F J k  - 1 i j r ' , k l r -  1 •  r t~klj (43) 

plus the gauge-fixing, energy-momentum correction tensor 

u _ 8 (SiSJ_�89 (44) TGv-- f~X 

Although this gauge-fixing term seems surprising at first, its origin derives 
from the requirement of overall gauge invariance of the total Lagrangian. 
Writing out the left-hand side of equation (40) in terms of its Riemannian 
plus proper torsion and torsion vector parts 

G o7) _ 2~7k T ~~ = G ~({ } ) + 2S % ~j)1_~ + ~S %~j).,a 

- ~.~t"~/)-�89 " + 2St'@L~,,,) 

_~  ( s , s  J_  , ~g ,s~ ok o~j (45) 
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we see that the gauge-fixing terms exactly cancel the torsion vector part, 
leaving only the Einstein tensor plus the proper torsion squared terms, which 
also vanish according to the field equation (37). 

Upon multiplying the ~Sk equation (26) by b, adding to the 3Ak equa- 
tion (27), and simplifying the covariant derivatives, we find the EM field 
equation 

V !  } F ki = j k  (46) 

where V~ } is the Riemannian covariant derivative. 
The remarkable simplicity of the EM field equation (46) will be 

exploited in the next section in the discussion of charge conservation. 

7. PROPERTIES OF EM FIELD IN RC SPACETIME FOR 
PERFECT FLUIDS 

7.1. Charge Conservation 
* k From the form of jk=qpuk, w e  know a priori that VkJ =0 because 

the particle number conservation constraint equation (34). However, for any 
vector V k in RC spacetime, one can show that 

~TV k -  w{ } V k (47) k - -  V k  

Then the divergence terms in equation (46) satisfy the condition (for 
example) 

* { } ~ k i  'VT{ }~/{ }L  "ki I ~ klTri_l_ 1 t," iL-'kr 
V k V  i 1' = V [ k  Vi ]  1" = ~ l ~ k i  r 1" ~ l ~ k i r I '  ~ - 0  (48) 

where K, S is the Riemann tensor in Riemannia,rl spacetime. Thus equation 
(46) under the action of the "star" derivative Vk in RC spacetime satisfies 
the condition for charge conservation even though the EM field F, 7 contains 
explicit torsion terms. 

We now turn to a discussion in the next subsection about the conditions 
imposed by the EM field on the EM potentials. 

7.2. Free Field Equations 

In the preceding subsection, we showed that the EM field satisfies the 
usual condition for charge conservation. To complete the discussion of the 
EM field, we must consider the constraints on the potentials obtained from 
the dual field equations for Div B and Curl E, i.e., the "free field equations." 
In an inertial frame, these equations take the usual simple form Div B = 0 
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and Curl E = - d B / d t .  Because of the presence of torsion, it is necessary to 
check these relations. We write the dual field 

* FiY= �89 eijkl Fkt (49) 

where *F g is the dual EM field tensor and e ijk~ is the totally antisymmetric 
Levi-Civita tensor. For consistency with equation (48), we take the "star" 
divergence of equation (49), 

* r } * F  'j + *FkJSjk ' ----- V !  } * F  ij V j * F ' J = V J  . . . . .  * " (50) 

where the last step follows because of the proper torsion field, equation (37). 
Upon substituting equations (6) and (49) into the above equations and using 
the field equations (36) and (37), we obtain 

k * F  # =  e ijk' Vt/Vi }Atl = .,jkq , ~- xA1 - t--~"tjk~J ~xJ--0 (51) 

where in the last step we used the circulating identity for the Riemann 
curvature tensor in Riemannian spacetime (Schouten, 1954). Thus, one 
obtains the usual free field equations. 

It is interesting to note that in this application, we find that the torsion 
vector is a propagating field proportional to the EM vector potential. If this 
theory is further constrained to the case where there is no EM field, then 
particle number conservation is sufficient to remove the torsion vector. Then 
this is just the case of a perfect fluid in general relativity (Ray and Smalley, 
1982a, 1983a,b; Ray, 1972). 

8. CONCLUSIONS 

We have shown that it is possible to find a variational theory in RC 
spacetime for a charged perfect fluid in which the EM field is minimally 
coupled to the geometry through the RC connection [see equation (6)]. We 
found that it was necessary to extend the self-consistent formulation for 
perfect fluids by requiring that the total Lagrangian for the theory be gauge 
invariant under the extended gauge transformation given by equations (8) 
and (9). This requires that there be a constitutive relationship between the 
torsion vector and the EM vector potential plus the addition of a gauge- 
fixing term to the total Lagrangian. 

With the above restrictions, we find that the field equation for the EM 
field takes the very simple form given by equation (46), which is the same 
form that one finds in the Einstein-Maxwell theory in Riemannian space- 
time, or that one finds in the Einstein-Cartan-Maxwell theories in which 
one assumes the two-form approach for the EM field as opposed to the 
minimal coupling approach that we assume in this work. Here the field 
tensor F ~/in equation (46) contains specific torsion terms. However, due to 
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the various field equations in the theory, we find that the EM field, as 
described by equation (46), conserves charge, obeys particle number conser- 
vation, and gives the usual free field equations. In this development, the EM 
field specifically couples to the RC geometry and directly influences the 
perfect-fluid energy-momentum. In effect, the overall theory does not neglect 
the obvious interaction of the EM field on the fluid density distribution and 
the consequent change in energy-momentum. The origin of this effect is in 
the extended thermodynamics given by equation (7), the conservation of 
particle number, and the constraint of the torsion vector to be proportional 
to the vector potential of the EM field. 

The metric field equation gives a symmetric energy-momentum tensor 
that now includes an internal energy directly dependent on the EM field; a 
symmetric EM energy-momentum; and a (symmetric) gauge-fixing term. 

We have demonstrated a new way that one can couple the EM field to 
RC spacetime, while retaining the expected properties of the EM field in the 
presence of a gravitational field. Our particular method treats the EM field 
as part of the overall system instead of as an external field as in developments 
where the EM field is a two-form. We have a well-defined theory of the 
interaction of the EM field with a perfect fluid in RC spacetime which has 
as its limit the Lagrangian-based theory with particle number conservation 
of a perfect fluid in RC spacetime when the EM field ,vanishes. 

Elsewhere we consider the highly interesting extension of the present 
work to perfect fluids with spin density. In this case, the proper torsion field 
would be active because of the spin density of the fluid. 
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